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An analysis based on symmetry yields a general form for the deformation elastic energy of a nematic
monolayer, formed by achiral symmetric molecules, deposited on a solid substrate. Lifshitz-invariant-like
terms in the energy, which originate from the substrate field, can induce a modulated-tilt state if the anchoring
energy is sufficiently low. A way to enhance the symmetry breaking is to apply a destabilizing magnetic or
electric field that serves to lower the anchoring energy. In the case of an initial state with homeotropic
alignment, the phase diagram displays a cusp-shaped tilt-modulated state intervening between two uniform tilt
states.
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I. INTRODUCTION

Langmuir monolayers of liquid crystals have been exten-
sively studied in the pastf1–3g. A challenging issue is the
prediction and observation of structural transitions giving
rise to tilt-modulated phases in the absence of molecular
chirality f4–7g. Modulated states in achiral centrosymmetric
materials have been of intense interest both for the underly-
ing physics and for applications. In thin layers and nano-
structures, modulated states may arise from surface-field-
inducing Lifshitz-invariant-like terms.

Up to now all published studies have been based on par-
ticular forms for the elastic energy density of the membrane,
able to explain the special experimental results obtained for
particular systems. Further the effect of external fields on
monolayers has attracted less attention.

In the present paper, we construct a general form of the
deformation elastic energy of a single nematic layer formed
by symmetric molecules on a solid substrate and we examine
the effect of an electric field on the monolayer. We show that
a linear term in the deformation tensor can give rise to a
spontaneous periodic tilt deformation of the director if the
corresponding elastic constantl is stiffer than a threshold
valuelth. In the opposite case, whenl,lth, the application
of a destabilizing electric or magnetic field can induce the
uniform-tilt ↔ modulated-tilt transition at a first threshold
field. A second structural transition takes place at a second
threshold field, and the modulated tilt state disappears, giv-
ing rise to another uniform tilt state. When the geometrical
normal to the substrate coincides with its easy direction and
in the limit wherel goes to zero, we show that the phase
diagram presents a cusp where three different structures
meet.

II. ELASTIC ENERGY DENSITY

We consider a monolayer formed by rodlike molecules
deposited on a flat surface with unit normalk. The molecules
are supposed achiral and apolar. The average molecular ori-
entation in the layer is given by the nematic directorn f8g
with unu=1. The energy density of the deformed film can be

expanded in a power series of the director spatial derivatives
ni,j =]ni /]xj f9g. Limiting the expansion up to the second
order in the deformation tensorni,j, we obtain

fsni,jd = g0 + lijni,j +
1

2
Hijklni,jnk,l , s1d

whereg0 is the energy density of the uniform state. We as-
sume that the directorn possesses the inversion symmetry—
i.e., that the two ends of a molecule forming the film are
equivalent. Strictly speaking, our analysis is valid for a
monomolecular film formed by symmetric molecules depos-
ited on a solid substrate or for a free-standing monomolecu-
lar films formed by symmetric molecules. However, the pre-
sented analysis can be easily extended to Langmuir
monolayer, where the head and the tail of a molecule are
essentially different.

By decomposing the elastic tensorsl and H in terms of
the elements of the layer symmetry—i.e.,n,k and of the
identity tensor—we obtain for the elastic deformation energy
density of the monolayer the expression

f = g0 + n ¹ ·n − lk · fn 3 ¹ 3 ng +
1

2
hK1s¹ ·nd2

+ K2fn · ¹ 3 ng2 + K3fn 3 ¹ 3 ng2j +
1

2
hK4f¹sk ·ndg2

+ K5fsk · ¹ dsk ·ndg2 + uK6fk · sn 3 ¹ 3 ndg2

+ K7s¹ ·ndsk · ¹ dsk ·ndj. s2d

Expressions2d is not an expansion in terms of a small angle,
but an expansion in terms of small deformationsni,j on the
range of the molecular forces responsible for the monomo-
lecular film under investigation. The calculations relevant to
the linear terms inni,j are discussed in detail inf10g. The
elastic constantn and l are connected to the so-called Lif-
shitz invariants. In our framework, wheren is equivalent to
−n, n=0. The connection ofl with the intermolecular poten-
tial responsible for the ordered phase under consideration has
been discussed inf10g. There it has been shown that if the
intermolecular potential is such as to give a splay-bend elas-
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tic constantK13 f9g, also the elastic constantl is different
from zero. The quantitiesK1, K2, andK3 are the equivalent
of the usual Frank’s elastic constants, andK4, K5, K6, andK7
are typical elastic constants of the lamellar structuref11g.
The elastic constantsKi have the dimensions of a bulk elastic
constant,kii ,10−11J/m f8g, times a molecular length,
,10−9m. Their order of magnitude is thenKi ,10−20. We
note that all the terms appearing in Eq.s2d are true scalar and
hence invariant for all changes of the reference framestrue
rotations or mirror reflectionsd f12g.

We restrict our present study to one-dimensional deforma-
tions in the presence of an external destabilizing electric field
and the directorn is contained in thesx,zd plane. In this
frameworkn=sinusxdi +cosusxd k, whereu is the tilt angle
in respect to the geometrical normal of the substrate. Of
course, more general analyses are possible, wheren
=nsx,yd, and it is not restricted to a plane. The work is in
progress and will be published elsewhere.

The uniform-tilt state energy density in Eq.s2d coincides
with the anisotropic part of the surface tension and is as-
sumed to be of the Rapini-Papoular formf13g

g0sud = −
1

2
w0 cos2su − u0d, s3d

with u0=cos−1sk ·n0d denoting the tilt angle preferred by the
substrate.n0 is the substrate easy axes, andw0.0 is the
anchoring energy strength.

The presence of an electric fieldE in the plane of the
layer f17g adds a new term tof of the type

fdsud = −
1

2
eae0 , sE ·nd2, s4d

wheree0 is the absolute dielectric permittivity of free space
andea the dielectric anisotropy of the nematogenic material.
Therefore, the energy density of the uniform state is renor-
malized by the electric field and is rewritten as

gsud = g0sud + fdsud = −
1

2
w0fcos2su − u0d + m sin2ug,

s5d

wherem=eae0,E2/w0 is a measure of the relative strength of
the external electric field with respect to the orienting field
responsible for the anisotropic part of the surface energy.
Equations5d shows that in the presence of an electric field
the Rapini-Papoular approximation does not work any
longer. In this case the easy tilt angleue is given by

tans2ued =
sins2u0d

coss2u0d − m
. s6d

For m.0—i.e., ea.0—the electric field tends to orient the
director along it; it follows thatu0øueøp /2. On the con-
trary, if m,0—i.e., ea,0—the electric field tends to orient
n perpendicular to it, and hence 0øueøu0.

Finally, the total free energy density of the monolayer as
function of the tilt angle is

f = − l sin2 u
du

dx
+

1

2
khsudSdu

dx
D2

+ gsud. s7d

Here, hsud=s1+a sin2u+b sin4ud, k=K1, a=fsK3+K4d /K1g
−1, and b=K6/K1. Thermodynamic stability of the above
free energy density requireshsud.0. Sinceb is positive, the
latter inequality holds always foraù0, as we suppose
throughout this paper. A detailed analysis will be given else-
where.

III. PERIODIC DEFORMATIONS IN
NEMATIC MONOLAYERS

Minimization of the elastic energy per unit length in they
direction,

Ffusxdg =E fSu,
du

dx
Ddx, s8d

leads to the first integral

1

2
khsudSdu

dx
D2

− gsud =
1

2R2 , s9d

whereR is an integration constant. Here, it is more conve-
nient to work with reduced quantities. Henceforth, lengths
are measured inÎk /w0 units and surface energy inw0 units.

A modulated structure should have the reduced period

Lr = hE
0

2pÎ hsud
1 − h2fcos2su − u0d + m sin2ug

du. s10d

The subscriptr stands for reduced units. The integration con-
stanth=RÎw0 is found by minimization of the average en-
ergy per periodrM with respect toh. The latter minimization
yields the equation

lr =
1

ph
E

0

2p

Îhsudh1 − h2fcos2su − u0d + m sin2ugjdu.

s11d

Then, the energy of the modulated structure is calculated
using Eq.s11d. From the stability conditionrM ,rH, where
rH=Fsu0d /L=gsu0d is the energy of the homogeneous state,
we deduce that the tilt modulation is a stable state with re-
spect to the uniform-tilt state when the elastic constantlr is
stiffer than a threshold valuelth. The valuelth corresponds
to Lr →` and is obtained whenh→hmax given by

hmax= Î2/h1 + m + Î1 + m2 − 2m coss2u0dj. s12d

Then, the valuelth, above which tilt modulation appears, is

lth =
1

phmax
E

0

2p

Îhsudh1 − hmax
2 scos2fu − u0g + m sin2udjdu.

s13d

Up to now, we have shown that the phase diagram of this
model exhibits a disorderedsunmodulatedd phase with a
uniform-tilt angleu0 and a modulated-tilt phase whereu is a
function of position: u=usxd. The modulated structure is
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driven by thel term, which is linear in the gradient operator
and therefore favors inhomogeneous ordering. This latter
term competes with thehsud elastic term which favors uni-
form ordering. A case of special interest is a monolayer with
homeotropic anchoring in the absence of an external field.

For a monolayer withu0=0, Eq. s12d gives hmax=1, if
m,1, andhmax=1/Îm, if m.1. In this case, Eq.s13d yields

lth =
Î1 − m

p
E

0

2p

Îhsudsin2udu, s14d

if mø1, and

lth =
Îm − 1

p
E

0

2p

Îhsudcos2udu, s15d

if mù1. Sincelth,um−1u1/2, the functionlth=lthsmd pre-
sents a cusp atm=1. The slope oflthsmd, at m=1, becomes
infinite. lthsmd has a minimum equal to zero atm=1; i.e., tilt
modulation appears as soon aslr Þ0. The wavelength of the
modulation is given by the expression

Lr =
1

lr
H 1

Îp
E

0

2p

ÎhsudduJ2

, s16d

and forlr Þ0, Lr is a finite quantity.
For a monolayer withu0Þ0 the cusp disappears and

lthsmd becomes differentiable for allm.
In the case of a nematogenic material with positive dielec-

tric anisotropy, Fig. 1 represents the reduced periodLr as
function of lr for three electric field values:sid the curve in
the middle, in absence of the electric field,sii d the lower
curve form=1, andsiii d the upper curve form=5. The other
parameters are kept constant at the values:a=3, b=1, and
u0=0. Note that the wavelength of the instability diverges
when approaching the threshold valuelth. The instability
threshold, which is atlth=2.35 for zero fieldsm=0d, reduces
to zero form=1, while for m=5 it seems to become 3.66,
larger than its zero-field value. For weak fieldsm,1, the
instability threshold decreases with respect with the zero-
field value, but stronger fields seems to drive the instability
threshold to higher values. In order to understand this seem-

ing nonmonotonic behavior of the instability threshold with
the field we construct the phase diagram in thesm, lrd plane.

Figure 2 shows the phase diagram in presence of an elec-
tric field for u0=0 ssolid lined. The value oflth in the ab-
sence of field first reduces with the amplitude of the desta-
bilizing field and becomes zero form=1, where a cusp
appears. For higher fieldssm.1d, another transition takes
place, this time from the modulated-tilt state to a uniform-tilt
state, and the threshold increases monotonically. For a stabi-
lizing field, molecules with negative dielectric anisotropy,
the threshold increases with the field as expected. Whenu0
Þ0, the minimum oflth is different from zerosdashed lined
and the derivative discontinuity disappears. When the easy
axis is in the layer plane, the minimum goes tom=−1, and
the instability may arise only for a material with negative
dielectric anisotropy. Note that at the cuspswhereu0=0 and
m=1d, the total surface tension isu independent; i.e., the
anisotropic part of the surface tension vanishes. In particular,
from Eq. s5d it follows that for u0=0 the effective easy tilt
angle is homeotropicsue=0d for m,1 and planar sue

=p /2d for m.1; i.e., at the cusp three different structures
merge: homeotropic, planar, and tilt modulated. Around the
cusp, the width of the tilt-modulated region inm varies aslr

2.
At the cusp point two second-order transition lines merge to
a second-order transition point. The cusp point is a Lifshitz
point f14,15g in the sm ,ld plane and a triple point in the
plane of anchoring coefficients. In this latter plane, adding
higher-order terms in the anchoring energy results in anchor-
ing transitions between homeotropic, planar, and tilted struc-
turesf16g.

The action of an electric field in the plane of the mono-
layer can induce uniform tilt and/or modulated tiltf17g. Con-
sider a case where the substrate induces uniform homeotro-
pic alignment—i.e.,lr ,lth—in the absence of the electric
field. According to the phase diagram of Fig. 2, increasing
the electric field should induce a transition towards a tilt-
modulated state. The modulation should persist up to a sec-
ond threshold field above which another uniform-tilt state
appears. Iflr .lth in the absence of an electric field, the
initial phase is a tilt-modulated one. Applying a strong
enough field the tilt modulation disappears above a threshold
field and the stable structure is a uniform-tilt state.

A rough estimation of the electric field amplitude to in-
duce a tilt modulation is done by takingea,10, and w
,10−3 J/m2. At the cusp,m=1, and henceEcr,50 V/mm.

FIG. 1. Plot ofLr vs lr under a destabilizing electric field:sid
left curve form=1, sii d middle curve form=0, andsiii d right curve
for m=5. The coefficients area=3, b=1, andu0=0.

FIG. 2. Thesm ,lrd phase diagram for an homeotropic mono-
layer ssolid lined and for a tilted monolayersdashed lined. mø0,
corresponds to nematogenic materials with negative dielectric
anisotropy.
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The latter field is rather high but experimentally attainable
f18g. In order to reduce the critical field at a few volts per
micrometer one has to use a substrate with anchoring energy
w&10−6 J/m2. Such substrates are now availablef19,20g.

IV. CONCLUSIONS

In summary, we constructed the general form of the de-
formation elastic energy of a nematic monolayer by consid-
ering the symmetry of an achiral nematogenic material and
that of a flat substrate. The phase diagram has a ground
uniform-tilt state and a one-dimensional modulated-tilt state.
The periodic tilt deformation is induced by a Lifshitz invari-
ant term linked to the substrate symmetry. In the presence of
a destabilizing electric field, the instability thresholdlth de-
creases towards zero with the field amplitude. Increasing suf-

ficiently the field amplitude results in a second threshold
above which the field destroys tilt modulation in favor of a
new uniform-tilt state. When the substrate normal is the easy
direction, the phase diagram presents cusp-shaped tilt-
modulated state intervening between two uniform-tilt states.
At the cusp point, homeotropic, planar, and tilt-modulated
states merge. In our analysis we have assumed that the an-
isotropic part of the surface energy relevant to the interaction
of the film with the substrate is of the Rapini-Papoular form.
In this case at the cusp the surface and field contributions
compensate each other. For more general forms of the sur-
face energy this exact compensation could be impossible. In
this case the cusp disappears.
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